Applied Biosystems 7900HT Fast Real-Time PCR System

Relative Quantitation Using Comparative C_T
Getting Started Guide

Introduction
Designing an RQ Experiment
Preparing Samples and Reaction Plates
Creating RQ Plate Documents and Generating Data
Analyzing and Viewing RQ Study Data
Notice to Purchaser

The Applied Biosystems 7900HT Fast Real-Time PCR System is a real-time thermal cycler covered by one or more of US Patents Nos. 6,814,934, 5,038,852, 5,333,675, 5,656,493, 5,475,610, 5,602,756, 6,703,236, 7,238,517, 6,818,437, 7,008,789, 6,563,581, 6,965,105 and 6,719,949 and corresponding claims in their non-US counterparts, owned by Applera Corporation. No right is conveyed expressly, by implication or by estoppel under any other patent claim, such as claims to apparatus, reagents, kits, or methods such as 5' nuclease methods. Further information on purchasing licenses may be obtained by contacting the Director of Licensing, Applied Biosystems, 850 Lincoln Centre Drive, Foster City, California 94404, USA.

Trademarks

Applied Biosystems, MicroAmp, Primer Express, ABI Prism, and VIC are registered trademarks and AB (Design), Appliera, Tempus, FAM, ROX, iScience, iScience (Design), and MultiScribe are trademarks of Applera Corporation or its subsidiaries in the US and/or certain other countries.

AmpErase, AmpliTaq Gold, and TaqMan are registered trademarks of Roche Molecular Systems, Inc.

SYBR Green is a registered trademark of Molecular Probes, Inc.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

All other trademarks are the sole property of their respective owners.
Preface
How to Use This Guide ... v
How to Obtain More Information .. vi
How to Obtain Support ... vii

Chapter 1
Introduction
About the 7900HT Fast System ... 2
About Relative Quantitation Assays .. 3
About RQ Experiments .. 4
Before You Begin ... 8

Chapter 2
Designing an RQ Experiment
Overview .. 10
Specifying the Components of an RQ Experiment 10
Selecting the PCR Method ... 12
Selecting the Chemistry ... 13
Selecting One- or Two-Step RT-PCR .. 14
Selecting the Probes and Primers .. 16

Chapter 3
Preparing the Samples and Reaction Plate
Preparing RNA .. 18
Converting Total RNA to cDNA .. 19
Preparing the PCR Master Mix .. 21
Preparing the Reaction Plate .. 23

Chapter 4
Creating RQ Plates and Generating Data
About RQ Plate Documents .. 28
Performing an RQ Run ... 35
Analyzing and Viewing the RQ Data ... 40
Reanalyzing Data .. 44
How to Use This Guide

Purpose of This Guide
This guide provides procedures for conducting Relative Quantitation using Comparative CT for gene expression assays using the Applied Biosystems 7900HT Fast Real-Time PCR System (7900HT Fast System).

Audience
This guide is written for principal investigators and laboratory staff who conduct relative quantitation for gene expression assays using the 7900HT Fast System.

Assumptions
This guide assumes that you have:

- Familiarity with Microsoft® Windows® XP operating system.
- Knowledge of general techniques for handling DNA and RNA samples and preparing them for PCR.
- A general understanding of the theory of relative quantitation using Comparative CT.
- A general understanding of hard drives and data storage, file transfers, and copying and pasting.

If you want to integrate the 7900HT Fast System into your existing laboratory data flow system, you need networking experience.

Text Conventions
This guide uses the following conventions:

- **Bold** indicates user action. For example:
 Type **0**, then press **Enter** for each of the remaining fields.
- *Italic* text indicates new or important words and is also used for emphasis. For example:
 Before analyzing, *always* prepare fresh matrix.
- A right arrow bracket (>) separates successive commands you select from a drop-down or shortcut menu. For example:
 Select **File > Open**.

User Attention Words
The following user attention words appear in Applied Biosystems user documentation. Each word implies a particular level of observation or action as described below:

Note – Provides information that may be of interest or help but is not critical to the use of the product.

IMPORTANT! – Provides information that is necessary for proper instrument operation, accurate chemistry kit use, or safe use of a chemical.
How to Obtain More Information

Related Documentation

For more information about using the 7900HT Fast System and performing assays, refer to:

• Applied Biosystems 7900HT Real-Time PCR System Plus/Minus Getting Started Guide (PN 4364017)
• Sequence Detection Systems Software version 2.3 Online Help (SDS Online Help)
• Applied Biosystems 7900HT Fast Real-Time PCR System Maintenance and Troubleshooting Guide (PN 4365542)
• Applied Biosystems 7900HT Fast Real-Time PCR System Site Preparation Guide (PN 4351923)
• ABI PRISM® 6100 Nucleic Acid PrepStation Users Guide (PN 4326242)
• DNA Isolation from Fresh and Frozen Blood, Tissue Culture Cells, and Buccal Swabs Protocol (using BloodPrep™ Chemistry, PN 4343586)
• High Capacity cDNA Archive Kit Protocol (PN 4312169)
• Isolation of Total RNA from Whole Blood and from Cells Isolated from Whole Blood Protocol (4332809)
• NucPrep® Chemistry Protocol: Isolation of Genomic DNA from Animal and Plant Tissue (PN 4333959)
• PrepMan™ Ultra Sample Preparation Reagent Protocol (PN 4318925)
• Primer Express® Software v3.0 Getting Started Guide (PN 4362460)
• Real-Time PCR Systems Chemistry Guide (PN 4363978)
• TaqMan® Gene Expression Assays Protocol (PN 4364226)
• TaqMan® Low Density Array Getting Started Guide (PN4319399)
• TaqMan® Universal PCR Master Mix Protocol (PN 4351891)
• Tempus™ Blood RNA Tube and Large Volume Consumables Protocol (4345218)
• Tissue RNA Isolation: Isolation of Total RNA from Plant and Animal Tissue Protocol (4330252)
• TransPrep Chemistry Protocol: Purification of gDNA from Filtrates Obtained After the Isolation of RNA from Homogenized Animal or Plant Tissue Samples (PN 4326965)

Send Us Your Comments
Applied Biosystems welcomes your comments and suggestions for improving its user documents. You can e-mail your comments to:

techpubs@appliedbiosystems.com

How to Obtain Support

To contact Applied Biosystems Technical Support from North America by telephone, call 1.800.762.4001.

For the latest services and support information for all locations, go to http://www.appliedbiosystems.com, then click the link for Support.

At the Support page, you can:

• Obtain worldwide telephone and fax numbers to contact Applied Biosystems Technical Support and Sales facilities
• Search through frequently asked questions (FAQs)
• Submit a question directly to Technical Support
• Order Applied Biosystems user documents, MSDSs, certificates of analysis, and other related documents
• Download PDF documents
• Obtain information about customer training
• Download software updates and patches
Chapter 1

Introduction

About the 7900HT Fast System

About Relative Quantitation Assays

About RQ Experiments

Before You Begin

Notes

Relative Quantitation Using Comparative C_T Assay Getting Started Guide for the 7900HT Fast System
About the 7900HT Fast System

System Description

The Applied Biosystems 7900HT Fast Real-Time PCR system (7900HT Fast System) uses fluorescence-based PCR chemistries to provide:

- Quantitative detection of nucleic acid sequences using real-time analysis
- Qualitative detection of nucleic acid sequences using end-point and dissociation-curve analysis

For more information on the 7900HT Fast System, refer to 7900HT Fast Real-Time PCR System Online Help.

Note: To access the online help, select Help > SDS Online Help from the SDS software, RQ Manager software, or Automation Controller software menu bars.

Supported Assays and Consumables

You can perform several assay types on the 7900HT Fast System using reaction plates in the 96-well, 384-well, and TaqMan® Low Density Array formats. This guide describes the relative quantitation (RQ) using comparative C_T assay type.

<table>
<thead>
<tr>
<th>Assay Type</th>
<th>Fast 96-well</th>
<th>Standard 96-well</th>
<th>Standard 384-well</th>
<th>TaqMan® Low Density Array</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard curve (AQ)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Comparative C_T (RQ)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Allelic discrimination</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Plus/minus</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

RQ assays are supported on the 7900HT Fast System using reaction plates in the standard 96-well, Fast 96-well, standard 384-well, and TaqMan® Low Density Array formats.

IMPORTANT! A Fast block, Fast reaction plates, and Fast PCR Master Mix are all required for running Fast PCR reactions.
About Relative Quantitation Assays

Relative Quantitation (RQ) using Comparative C_T determines the change in expression of a nucleic acid sequence (target) in a test sample relative to the same sequence in a calibrator sample. The calibrator sample can be an untreated control or a sample at time zero in a time-course study (Livak and Schmittgen, 2001). For example, RQ is commonly used to compare expression levels of wild-type alleles with mutated alleles or the expression levels of a gene in different tissues.

RQ provides accurate comparison between the initial level of template in each sample, without requiring the exact copy number of the template. Also, the relative levels of templates in samples can be determined without the use of standard curves.

Real-Time PCR Assays

RQ assays are performed using Real-Time PCR where you monitor the progress of the PCR as it occurs (Kwok and Higuchi, 1989). Data are collected throughout the PCR process rather than at the end of the PCR process (end-point PCR).

In Real-Time PCR, reactions are characterized by the point in time during cycling when amplification of a target is first detected rather than by the amount of target accumulated at the end of PCR (Saiki et al., 1985).

There are two types of quantitative real-time PCR: absolute and relative.

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>The initial cycles of PCR in which there is little change in fluorescence signal.</td>
</tr>
<tr>
<td>Threshold</td>
<td>A level of ΔR_n—automatically determined (or manually set) by the SDS software—used for C_T determination in real-time assays. The level is set to be above the baseline and sufficiently low to be within the exponential growth region of the amplification curve. The threshold is the line whose intersection with the Amplification plot defines the C_T.</td>
</tr>
<tr>
<td>Threshold cycle (C_T)</td>
<td>The fractional cycle number at which the fluorescence passes the threshold.</td>
</tr>
<tr>
<td>Passive reference</td>
<td>A dye that provides an internal fluorescence reference to which the reporter dye signal can be normalized during data analysis. Normalization is necessary to correct for fluorescence fluctuations caused by changes in concentration or in volume.</td>
</tr>
<tr>
<td>Reporter dye</td>
<td>The dye attached to the 5' end of a TaqMan® probe. The dye provides a fluorescent signal that indicates specific amplification.</td>
</tr>
<tr>
<td>Normalized reporter (R_n)</td>
<td>The ratio of the fluorescence emission intensity of the reporter dye to the fluorescence emission intensity of the passive reference dye.</td>
</tr>
<tr>
<td>Delta R_n (ΔR_n)</td>
<td>The magnitude of the signal generated by the specified set of PCR conditions ($\Delta R_n = R_n - \text{baseline}$).</td>
</tr>
</tbody>
</table>
The figure below shows a representative amplification plot that includes some of the terms defined above.

About RQ Experiments

RQ Experiment Workflow

In this document, the term “RQ experiment” refers to the entire process of relative quantitation using comparative C_T experiment, beginning with generating cDNA from RNA (reverse transcription) through analyzing RQ data. The general workflow of an RQ experiment is shown below.

Sample RQ Experiment

A sample experiment, representing a typical relative quantitation experiment, is provided in Appendix A, “Sample Experiment,” on page 67. Excerpts of the sample experiment are provided at various points in this guide (as they apply to the RQ process). These excerpts appear in boxes with a blue heading. You can use the summarized procedures of the sample relative quantitation experiment in Appendix A, “Sample Experiment,” on page 67 to familiarize yourself with the entire relative quantitation workflow.

RQ Studies with the 7900HT Fast System

The data-collection part of an RQ assay is a in single plate document called the RQ plate. Amplification data from PCR runs are stored with sample setup information on the RQ plate.

Notes
The data analysis part of a single or multiple RQ assay is called an RQ Study. You can analyze up to ten RQ plates in a study. RQ study documents do not control the instrument, nor do they provide tools for setting up or modifying plates. When adding plate results to a study, ensure that you do not combine results from different plate formats, different thermal cycling conditions, or different reaction volumes in the same RQ study.

Note: The 7900HT Fast System software uses the *comparative C*_\textsubscript{T}*-method (ΔΔC*_\textsubscript{T}*) to calculate relative quantities of a nucleic acid sequence. If you want to perform comparative C*_\textsubscript{T}* using the *relative standard curve method*, you should use an AQ assay type and refer to the *Real-Time PCR Systems Chemistry Guide* (PN 4363978).

Required User-Supplied Materials

Chemistry/Reagents

<table>
<thead>
<tr>
<th>Item</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any of the following DNA isolation and purification chemistry systems:</td>
<td></td>
</tr>
<tr>
<td>• ABI PRISM® 6100 Nucleic Acid PrepStation</td>
<td>Applied Biosystems (PN 6100-01)</td>
</tr>
<tr>
<td>• BloodPrep™ Chemistry (genomic DNA from fresh or frozen blood or cells)</td>
<td>Applied Biosystems (PN 4346860)</td>
</tr>
<tr>
<td>• NucPrep™ Chemistry (DNA from animal and plant tissue)</td>
<td>Applied Biosystems (PN 4330274)</td>
</tr>
<tr>
<td>• PrepMan® Ultra Sample Preparation Reagent Kit</td>
<td>Applied Biosystems (PN 4322547)</td>
</tr>
<tr>
<td>• High Capacity cDNA Archive Kit</td>
<td>Applied Biosystems (PN 4322171)</td>
</tr>
<tr>
<td>• ABI PRISM® TransPrep System (purification of gDNA after the isolation of RNA from animal and plant tissue)</td>
<td>Applied Biosystems web site</td>
</tr>
<tr>
<td>TaqMan® reagents appropriate for your probes and primers:</td>
<td></td>
</tr>
<tr>
<td>• TaqMan® Fast Universal PCR Master Mix (2X), No AmpErase UNG</td>
<td>Applied Biosystems (PN 4352042)</td>
</tr>
<tr>
<td>• TaqMan® Universal PCR Master Mix (2X)</td>
<td>Applied Biosystems (PN 4304437)</td>
</tr>
<tr>
<td>• TaqMan® Universal PCR Master Mix (2X), No AmpErase UNG</td>
<td>Applied Biosystems (PN 4324018)</td>
</tr>
<tr>
<td>• SYBR® Green Master Mix, 200 reactions (not for use with TaqMan® Low Density Arrays)</td>
<td>Applied Biosystems (PN 4309155)</td>
</tr>
<tr>
<td>• SYBR® Green RT-PCR Reagents</td>
<td>Applied Biosystems (PN 4310179)</td>
</tr>
<tr>
<td>Labeled primers and probes from one of the following sources:</td>
<td></td>
</tr>
<tr>
<td>• TaqMan® Gene Expression Assays (predesigned primers and probes)</td>
<td>Applied Biosystems Web site (www.appliedbiosystems.com)</td>
</tr>
<tr>
<td>• Custom TaqMan® Gene Expression Assays service (predesigned primers and probes)</td>
<td>Applied Biosystems Web site (www.appliedbiosystems.com)</td>
</tr>
<tr>
<td>• Primer Express® Software (custom-designed primers and probes)</td>
<td>Contact your Applied Biosystems Representative</td>
</tr>
</tbody>
</table>
Reaction Plates and Covers

IMPORTANT! Do not use MicroAmp® caps (domed) or Optical Tubes with the 7900HT Fast System. You can use Optical Caps (PN 4323032) *only* on the standard 96-well plates with the 7900HT Fast System.

<table>
<thead>
<tr>
<th>Item</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard 96-well reaction plates</td>
<td></td>
</tr>
<tr>
<td>• MicroAmp® 96-Well Optical Reaction Plate with Barcode (code 128), 20 plates</td>
<td>Applied Biosystems (PN 4306737)</td>
</tr>
<tr>
<td>• MicroAmp® 96-Well Optical Reaction Plate with Barcode (code 128), 25-Pack, 500 plates</td>
<td>Applied Biosystems (PN 4326659)</td>
</tr>
<tr>
<td>Includes 25 of PN 4306737, MicroAmp® 96-Well Optical Reaction Plates with Barcode</td>
<td></td>
</tr>
<tr>
<td>• MicroAmp® 96-Well Optical Reaction Plate with Barcode (code 128) and ABI PRISM® Optical Adhesive Cover, 100 plates/100 covers</td>
<td>Applied Biosystems (PN 4314320)</td>
</tr>
<tr>
<td>Includes 100 ABI PRISM® Optical Adhesive Covers (PN 4311971) and 5 of PN 4306737, MicroAmp® 96-Well Optical Reaction Plates with Barcode</td>
<td></td>
</tr>
<tr>
<td>• MicroAmp® Splash Free Support Base for 96-Well Reaction Plates, 10 bases</td>
<td>Applied Biosystems (PN 4312063)</td>
</tr>
<tr>
<td>Optical 96-well fast plates</td>
<td></td>
</tr>
<tr>
<td>• Optical 96-Well Fast Thermal Cycling Plate with Barcode (code 128)</td>
<td>Applied Biosystems (PN 4346906)</td>
</tr>
<tr>
<td>• MicroAmp® Splash Free Support Base for 96-Well Reaction Plates, 10 bases</td>
<td>Applied Biosystems (PN 4312063)</td>
</tr>
<tr>
<td>Standard 384-well reaction plates</td>
<td></td>
</tr>
<tr>
<td>• 384-Well Clear Optical Reaction Plate with Barcode (code 128), 50 plates</td>
<td>Applied Biosystems (PN 4309849)</td>
</tr>
<tr>
<td>• 384-Well Clear Optical Reaction Plate with Barcode (code 128), 10-Pack, 500 plates</td>
<td>Applied Biosystems (PN 4326270)</td>
</tr>
<tr>
<td>Includes 10 of PN 4309849, 384-Well Clear Optical Reaction Plates with Barcode</td>
<td></td>
</tr>
<tr>
<td>TaqMan® Low Density Arrays</td>
<td></td>
</tr>
<tr>
<td>• TaqMan® Low Density Arrays</td>
<td>Applied Biosystems Web site</td>
</tr>
</tbody>
</table>
Optical adhesive covers

<table>
<thead>
<tr>
<th>Item</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABI PRISM® Optical Adhesive Cover Starter Kit, 20 covers</td>
<td>Applied Biosystems (PN 4313663)</td>
</tr>
<tr>
<td>Includes 20 ABI PRISM® Optical Adhesive Covers, an Applicator, and an ABI PRISM® Optical Cover Compression Pad</td>
<td></td>
</tr>
<tr>
<td>ABI PRISM® Optical Adhesive Covers, 100 covers</td>
<td>Applied Biosystems (PN 4311971)</td>
</tr>
<tr>
<td>ABI PRISM® Optical Adhesive Covers, 25 covers</td>
<td>Applied Biosystems (PN 4360954)</td>
</tr>
<tr>
<td>Optical Caps, 8 Caps/Strip, 2400 Caps/300 Strips</td>
<td>Applied Biosystems (PN 4323032)</td>
</tr>
</tbody>
</table>

Other Consumables and Equipment

<table>
<thead>
<tr>
<th>Item</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centrifuge with adapter for 96-well plates</td>
<td>Major laboratory supplier (MLS)</td>
</tr>
<tr>
<td>Centrifuge with adapter for 384-well plates</td>
<td>Major laboratory supplier (MLS)</td>
</tr>
<tr>
<td>Centrifuge with adapter for TaqMan® Low Density Arrays</td>
<td>Major laboratory supplier (MLS)</td>
</tr>
<tr>
<td>Gloves</td>
<td>MLS</td>
</tr>
<tr>
<td>Microcentrifuge</td>
<td>MLS</td>
</tr>
<tr>
<td>Microcentrifuge tubes, sterile 1.5-mL</td>
<td>MLS</td>
</tr>
<tr>
<td>Nuclease-free water</td>
<td>MLS</td>
</tr>
<tr>
<td>Pipette tips, with filter plugs</td>
<td>MLS</td>
</tr>
<tr>
<td>Pipettors, positive-displacement</td>
<td>MLS</td>
</tr>
<tr>
<td>Safety goggles</td>
<td>MLS</td>
</tr>
<tr>
<td>Vortexer</td>
<td>MLS</td>
</tr>
</tbody>
</table>
Before You Begin

Background and Pure Dye Calibrations
Check that background and pure-dye calibrations have been performed regularly to ensure optimal performance of the 7900HT Fast System. For more information about background and pure dye calibrations, refer to the *SDS Online Help* and the *Applied Biosystems 7900HT Fast Real-Time PCR System Maintenance and Troubleshooting Guide* (PN 4365542).

Accessing the Online Help
Some steps in this chapter refer you to the *SDS Online Help* for more information. To access the online help, select **Help > SDS Online Help** from the SDS software menu bar.

Automation Options
The 7900HT Fast System can run prepared reaction plates individually or in groups using the Automation Accessory with the Zymark Twister Microplate Handler. If you are not using the Automation Accessory, you must run reaction plates individually.

For clarity, this chapter only illustrates running an individual reaction plate. For information on running multiple reaction plates, refer to Appendix B, “SDS Automation Controller Software,” on page 73.

For information on automated operation of the 7900HT Fast System using the Automation Accessory, see the *SDS Online Help*.

Notes
Designing an RQ Experiment

Overview

Specifying the Components of an RQ Experiment

Selecting the PCR Method

Selecting the Chemistry

Selecting One- or Two-Step RT-PCR

Selecting the Probes and Primers

Introduction

Preparing the Samples and Reaction Plate

Creating RQ Plates and Generating Data

Analyzing and Viewing RQ Study Data in RQ Manager 1.2

Notes

Relative Quantitation Using Comparative C_T Assay Getting Started Guide for the 7900HT Fast System
Overview

Typical RQ experiments are designed for traditional (singleplex) PCR, where a primer pair plus a TaqMan probe or a primer pair plus a SYBR® Green binding dye are present in a reaction. The following sections describe design decisions required for RQ experiments.

Specifying the Components of an RQ Experiment

For every sample in an RQ experiment, you must specify:

- **A target** – The nucleic acid sequence that you are studying.
- **A calibrator** – The sample used as the basis for comparative results.
- **An endogenous control** – A gene present at a consistent expression level in all experimental sample sets. By using an endogenous control as an active reference, you can normalize quantitation of a cDNA target for differences in the amount of cDNA added to each reaction. Note that:
 - Each sample type (for example, each tissue in a study comparing multiple tissues) requires an endogenous control.
 - If samples are spread across multiple plates, each plate must have an endogenous control. Additionally, every plate must include an endogenous control for every sample type on the plate.

Typically, housekeeping genes such as β-actin, glyceraldehyde-3-phosphate (GAPDH), and ribosomal RNA (rRNA), are used as endogenous controls because their expression levels tend to be relatively stable (Mullis and Faloona, 1987).

- **Replicate wells** – For Comparative C\textsubscript{T} studies, Applied Biosystems recommends using three or more replicate reactions per sample and endogenous control to ensure statistical significance.

For more information about these requirements, refer to the *Real-Time PCR Systems Chemistry Guide.*
Sample Experiment

In the sample experiment, the objective is to compare the expression levels of seven genes in the adipose, kidney, and muscle tissue of an individual. The 7 genes of interest, including CCKAR, GH, LEPR, CLPIN1, and TGFb, PCSK1, and HL are the targets and the adipose sample serves as the calibrator.

The SDS software sets gene expression levels for the calibrator sample to 1 (log of zero). Consequently, if more gene transcript is in the target sample (kidney or muscle) than in the calibrator sample (adipose), the gene expression level of the target sample is greater than 1. Similarly, if less gene transcript is in the target sample than in the calibrator, the gene expression level in the target sample is less than 1.

Because RQ is based on PCR, the more template in a reaction, the more the PCR product and the greater the fluorescence. To adjust for possible differences in the amount of template added to the reaction, GAPDH serves as an endogenous control. Thus, expression levels of the endogenous control are subtracted from expression levels of target genes. An endogenous control is required for each tissue sample.

The experiment includes three sets of endogenous controls—one for each tissue. Also, the endogenous control for each tissue must be amplified on the same plate as the target sequences for that tissue. Finally, note that the experiment uses the singleplex PCR format, and therefore, the endogenous controls are amplified in wells different from the target wells.

Four replicates of each target gene and the endogenous control gene are performed to ensure statistical significance (see below).

Note: The sample RQ experiment utilized a single plate for the entire experiment. You can also design experiments so that several samples are amplified on the same plate, as shown in the following table.

Sample Single Plate RQ Study

In the sample RQ experiment, multiple sample types were run on a single plate. An endogenous control for each sample type must also be included on the same plate, as shown here.

Optional Multi-plate RQ Study

A multiple RQ plate setup example where each plate contains a single sample type (tissue). The endogenous control for each tissue should be on the same plate as the targets for that tissue.

Notes
Selecting the PCR Method

Types of PCR Methods

You can perform PCR using either of the following:

- A singleplex reaction, where a single primer pair is present in the reaction tube or well. Only one target sequence or endogenous control can be amplified per reaction.
- A multiplex reaction, where two or more primer pairs are present in the reaction. Each primer pair amplifies either a target sequence or an endogenous control.

![Singleplex PCR and Multiplex PCR Diagram]

Selection Criteria

Both methods give equivalent results for RQ experiments. To select a method for your needs, consider the following:

1. The type of chemistry you use to detect PCR products – Singleplex PCR can use either SYBR® Green or TaqMan reagent-based chemistry. Multiplex PCR can use only TaqMan reagent based chemistry.

 Note: TaqMan Low Density Arrays are designed for singleplex PCR reactions only. For more information on TaqMan Low Density Arrays, refer to the TaqMan Low Density Array Getting Started Guide (PN4319399).

2. The amount of time you want to spend optimizing and validating your experiment – Amplifying target sequences and endogenous controls in separate reactions (singleplex PCR) requires less optimization and validation than multiplex PCR.

3. For multiplex PCR methods: the primer limitations, the relative abundance of the target and reference sequences (the endogenous control must be more abundant than the targets), and the number of targets in the study.

 IMPORTANT! As the number of gene targets increases, the singleplex format is typically more effective than the multiplex format because less optimization is required. However, running multiple reactions increases throughput and reduces the effects of pipetting errors.

 For more information about multiplex and singleplex PCR, refer to the Real-Time PCR Systems Chemistry Guide.

Sample Experiment

The singleplex PCR method is used in the example experiment because the number of targets to be amplified is 7 genes and there is one endogenous control.

Notes
Selecting the Chemistry

About Chemistries

Applied Biosystems offers two types of chemistries that you can use to detect PCR products on Real-Time instruments, as explained in the following table. Both TaqMan probe-based and SYBR Green I dye chemistries can be used for either one- or two-step RT-PCR. For more information about these chemistries, refer to the *Real-Time PCR Systems Chemistry Guide*.

<table>
<thead>
<tr>
<th>Chemistry</th>
<th>Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>TaqMan® reagents or kits</td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td>Step 1: Polymerization A reporter (R) and a quencher (Q) are attached to the 5' and 3' ends of a TaqMan probe.</td>
</tr>
<tr>
<td></td>
<td>Step 2: Strand Displacement When both dyes are attached to the probe, reporter dye emission is quenched.</td>
</tr>
<tr>
<td>Advantages</td>
<td>Step 3: Cleavage During each extension cycle, the Applied Biosystems hot-start DNA polymerase system cleaves the reporter dye from the probe.</td>
</tr>
<tr>
<td>• Increases specificity with a probe. Specific hybridization between probe and target generates fluorescence signal.</td>
<td>Step 4: Polymerization Completed After being separated from the quencher, the reporter dye emits its characteristic fluorescence.</td>
</tr>
<tr>
<td>• Provides multiplex capability.</td>
<td></td>
</tr>
<tr>
<td>• Optimized assays available.</td>
<td></td>
</tr>
<tr>
<td>• Allows 5'-nuclease assay to be carried out during PCR.</td>
<td></td>
</tr>
<tr>
<td>• Improves detection of low-copy target gene in relation to SYBR Green I dye.</td>
<td></td>
</tr>
<tr>
<td>SYBR® Green I reagents</td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td>Step 1: Reaction setup The SYBR® Green I dye fluoresces when bound to double-stranded DNA.</td>
</tr>
<tr>
<td>Uses SYBR Green I dye, a double-stranded DNA binding dye, to detect PCR products as they accumulate during PCR cycles.</td>
<td>Step 2: Denaturation When the DNA is denatured, the SYBR® Green I dye is released and the fluorescence is drastically reduced.</td>
</tr>
<tr>
<td>Advantages</td>
<td>Step 3: Polymerization During extension, primers anneal and PCR product is generated.</td>
</tr>
<tr>
<td>• Economical (no probe needed)</td>
<td></td>
</tr>
<tr>
<td>• Amplifies all double-stranded DNA</td>
<td></td>
</tr>
<tr>
<td>• Yields a melting profile of distinct PCR runs</td>
<td></td>
</tr>
<tr>
<td>• Increases signal fluorescence as amplification product length increases.</td>
<td></td>
</tr>
<tr>
<td>• Improves detection of low-copy target genes.</td>
<td></td>
</tr>
<tr>
<td>Limitations</td>
<td>Step 4: Polymerization completed SYBR® Green I dye binds to the double-stranded product, resulting in a net increase in fluorescence detected by the instrument.</td>
</tr>
<tr>
<td>Binds nonspecifically to all double-stranded DNA sequences. To avoid false positive signals, check for nonspecific product formation using dissociation curve or gel analysis.</td>
<td></td>
</tr>
</tbody>
</table>

Notes

Relative Quantitation Using Comparative C_T Assay Getting Started Guide for the 7900HT Fast System
Two Types of TaqMan Probes

Applied Biosystems offers two types of TaqMan probes:

- TaqMan probes with TAMRA dye as a quencher
- TaqMan MGB (minor groove binder) probes with non-fluorescent quencher (NFQ)

For more information about TaqMan probe-based chemistry, refer to the *Real-Time PCR Systems Chemistry Guide*.

Selecting One- or Two-Step RT-PCR

You can perform Real-Time PCR with either reverse transcription (RT) and PCR in a single reaction (one-step) or in separate reactions (two-step). The reagent configuration you use depends on which method you select:

- In one-step RT-PCR, RT and PCR take place in one buffer system, which provides the convenience of a single-tube preparation for RT and PCR amplification. However, Fast PCR Master Mix or the carryover prevention enzyme, AmpErase® UNG cannot be used to perform one-step RT-PCR. For more information about UNG, refer to the *Real-Time PCR Systems Chemistry Guide*.

- Two-step RT-PCR is performed in two separate reactions: First, total RNA is reverse transcribed into cDNA, then the cDNA is amplified by PCR. This method is useful for detecting multiple transcripts from a single cDNA template or for storing cDNA aliquots for later use. AmpErase® UNG (uracil-N-glycosylase) can be used to prevent carryover contamination.

Note: TaqMan (2X) Universal PCR Master Mix is available with or without AmpErase UNG. If you are using TaqMan Fast Universal PCR Master Mix (2X), No Amperase UNG, you must purchase AmpErase UNG separately.

IMPORTANT! This guide provides an RQ experiment which is designed using two-step RT-PCR with TaqMan Universal PCR Master Mix (2X). For additional options, refer to the *Real-Time PCR Systems Chemistry Guide*.
Chapter 2 Designing an RQ Experiment
Selecting One- or Two-Step RT-PCR

Relative Quantitation Using Comparative CT Assay Getting Started Guide for the 7900HT Fast System

Notes

Two-Step RT-PCR

1. **Sample RNA**
 - RT Master Mix
 - RT Incubation

2. **RT Master Mix**
 - Sample RNA
 - RT Incubation
 - Aliquot DNA

3. **Archive**
 - RT Incubation and PCR amplification
 - Results: 2 hours

4. **Standard PCR Master Mix OR**
 - PCR Amplification and Detection

5. **Results**
 - 2 hours

One-Step RT-PCR

1. **Sample RNA**
 - Standard PCR Master Mix
 - RT incubation and PCR amplification

2. **Standard PCR Master Mix**
 - Results: 2 hours 30 minutes

Recommended Kits for Two-Step RT-PCR

<table>
<thead>
<tr>
<th>Chemistry</th>
<th>Step</th>
<th>Reagent</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>TaqMan reagents or kits</td>
<td>RT</td>
<td>High Capacity cDNA Archive Kit</td>
<td>4322171</td>
</tr>
<tr>
<td></td>
<td>PCR</td>
<td>TaqMan Universal PCR Master Mix (2X)</td>
<td>4304437</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TaqMan Fast Universal PCR Master Mix (2X), No AmpErase UNG</td>
<td>4352042</td>
</tr>
<tr>
<td>SYBR Green I reagents or kits</td>
<td>RT</td>
<td>High Capacity cDNA Archive Kit</td>
<td>4322171</td>
</tr>
<tr>
<td></td>
<td>PCR</td>
<td>SYBR Green Master Mix</td>
<td>4309155</td>
</tr>
<tr>
<td></td>
<td>RT and PCR</td>
<td>SYBR Green RT-PCR Reagents</td>
<td>4310179</td>
</tr>
</tbody>
</table>

Sample Experiment

Pre-made probes and primers for all the genes of interest are obtained from the TaqMan® Gene Expression Assays product line, which uses TaqMan reagent-based chemistry. Two-step RT-PCR is performed using the reagents recommended for TaqMan reagent- or kit-based chemistry shown in the table above.
Selecting the Probes and Primers

You must select primer/probe sets for your target and endogenous control sequences. Applied Biosystems provides three options for choosing primers and probes:

- **TaqMan® Gene Expression Assays** – Optimized, ready-to-use TaqMan reagent-based 5′ nuclease assays for human, mouse, or rat transcripts. These assays are available as inventoried and non-inventoried assays. Note that TaqMan Low Density Arrays use inventoried assays only. For information on available primer/probe sets or to place an order, go to http://www.allgenes.com.

- **Custom TaqMan® Gene Expression Assays** – Design, synthesize, formulate, and deliver quality-controlled primer and probe sets. Use this service if the assay you need is not currently available. To place an order, go to http://www.allgenes.com.

- **Primer Express® Software** – Helps you design primers and probes for your quantitation experiment. For information about using this software, refer to the Primer Express® Software Version 3.0 Getting Started Guide (PN 4362460).

Applied Biosystems provides quantitation assay design guidelines that provide a reliable system for assay design and optimization. For information about the assay design guidelines, refer to the Real-Time PCR Systems Chemistry Guide.

If you ordered TaqMan® Gene Expression Assays or Custom TaqMan® Gene Expression Assays, probes are already labeled with FAM™ as a reporter dye. If you design your own assays, you need to specify a reporter dye for your custom probe(s). For singleplex experiments, you can use the same dye for targets and endogenous control(s). For multiplex experiments, the probe for the target is typically labeled with FAM dye and the endogenous control with VIC® dye.

Sample Experiment

Primers and probes for all genes being studied are obtained from Applied Biosystems TaqMan® Gene Expression Assays. Each assay consists of two unlabeled PCR primers and a FAM™ dye-labeled TaqMan® MGB probe, provided as a 20X assay mix. All target probes are labeled with FAM™ dye; the endogenous control is also labeled with FAM™ dye.

The following table provides the gene symbol, gene name, and Applied Biosystems Assay ID number (provided on the Web site) for the genes studied and the endogenous control.

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Gene Name</th>
<th>Assay ID #</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCKAR</td>
<td>cholecystokinin A receptor</td>
<td>Hs00167891_m1</td>
</tr>
<tr>
<td>GH1</td>
<td>growth hormone 1</td>
<td>Hs00236859_m1</td>
</tr>
<tr>
<td>LEPR</td>
<td>leptin receptor</td>
<td>Hs00174492_m1</td>
</tr>
<tr>
<td>LPIN1</td>
<td>lipin 1</td>
<td>Hs00299515_m1</td>
</tr>
<tr>
<td>TGFB1</td>
<td>transforming growth factor, beta 1</td>
<td>Hs00171257_m1</td>
</tr>
<tr>
<td>PCSK1</td>
<td>proprotein convertase subtilisin/kexin type 1</td>
<td>Hs00175619_m1</td>
</tr>
<tr>
<td>HL</td>
<td>hepatic lipase</td>
<td>Hs00165106_m1</td>
</tr>
<tr>
<td>GAPDH</td>
<td>glyceraldehyde-3-phosphate dehydrogenase</td>
<td>Hs99999905_m1</td>
</tr>
</tbody>
</table>

Notes
Preparing RNA

Isolating RNA Applied Biosystems supplies an instrument system and proprietary chemistries for isolating RNA from a variety of starting materials, such as blood, tissue, cell cultures, and plant material.

<table>
<thead>
<tr>
<th>System</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABI PRISM® 6100 Nucleic Acid PrepStation</td>
<td>6100-01</td>
</tr>
<tr>
<td>Total RNA Chemistry Reagents:</td>
<td></td>
</tr>
<tr>
<td>Nucleic Acid Purification Elution Solution</td>
<td>4305893</td>
</tr>
<tr>
<td>Nucleic Acid Purification Lysis Solution</td>
<td>4305895</td>
</tr>
<tr>
<td>Nucleic Acid Purification Wash Solution I</td>
<td>4305891</td>
</tr>
<tr>
<td>Nucleic Acid Purification Wash Solution II</td>
<td>4305890</td>
</tr>
<tr>
<td>AbsoluteRNA Wash Solution (DNase treatment)</td>
<td>4305545</td>
</tr>
<tr>
<td>Tempus™ Blood RNA Tubes (For collection, stabilization, and isolation of total RNA in whole blood for gene expression analysis using the 6100 PrepStation)</td>
<td>4342972</td>
</tr>
<tr>
<td>Isolation of Total RNA from Whole Blood and from Cells Isolated from Whole Blood Protocol</td>
<td>4332809</td>
</tr>
<tr>
<td>Tempus™ Blood RNA Tube and Large Volume Consumables Protocol</td>
<td>4345218</td>
</tr>
<tr>
<td>Tissue RNA Isolation: Isolation of Total RNA from Plant and Animal Tissue Protocol</td>
<td>4330252</td>
</tr>
</tbody>
</table>

Quality of RNA The total RNA you use for RQ experiments should:

- Have an $A_{260/280}$ greater than 1.9
- Be intact when visualized by gel electrophoresis
- Be free of RT or PCR inhibitors

Refer to the High Capacity cDNA Archive Kit Protocol (4322169) for additional guidelines on preparing the RNA template.

Notes
Converting Total RNA to cDNA

Using the High Capacity cDNA Archive Kit

Use the High Capacity cDNA Archive Kit (PN 4322171) to perform the first step (RT) in the two-step RT-PCR method. Perform the manual method for converting total RNA to cDNA, as described in the *High Capacity cDNA Archive Kit Protocol* (PN 4322169).

Adjusting the Starting Concentration of Total RNA

The High Capacity cDNA Archive Kit is set up to convert 0.1 to 10 µg of total RNA to cDNA. Make sure you convert enough total RNA so that the final concentration of total RNA converted to cDNA is 10 to 100 ng in 5 µL for each 50-µL PCR reaction.

IMPORTANT! The protocol is not shipped with the High Capacity cDNA Archive Kit. To access the protocol, go to http://docs.appliedbiosystems.com/search.taf. Select *ABI PRISM® 6100 Nucleic Acid PrepStation* in the Product list box, then click **Search** at the bottom of the page. The protocol is listed under the Protocol heading.

Thermal Profile Parameters for RT

The High Capacity cDNA Archive Kit uses the following thermal profile parameters for the RT step.

<table>
<thead>
<tr>
<th>Step Type</th>
<th>Time (min)</th>
<th>Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOLD</td>
<td>10</td>
<td>25 °C</td>
</tr>
<tr>
<td>HOLD</td>
<td>120</td>
<td>37 °C</td>
</tr>
</tbody>
</table>

Note: Thermal cycling conditions for one-step RT-PCR are described on page 35.

Storing cDNA

After RT is complete, store all cDNA samples at – 15 °C to – 25 °C. To minimize repeated freeze-thaw cycles of cDNA, store cDNA samples in aliquots.

WARNING CHEMICAL HAZARD. **10 × RT Buffer** may cause eye, skin, and respiratory tract irritation. Read the MSDS, and follow the handling instructions. Wear appropriate protective eyewear, clothing, and gloves.
Chapter 3 Preparing the Samples and Reaction Plate
Converting Total RNA to cDNA

Sample Experiment

For the example experiment, RNA is extracted from the adipose, muscle, and kidney tissues of an individual. RNA concentration is determined spectrophotometrically (using A_{260}), and the RNA is diluted to a final concentration of 50 ng/µL.

The RT reaction mix is prepared as described in the *High Capacity cDNA Archive Kit Protocol*.

<table>
<thead>
<tr>
<th>Component</th>
<th>µL/Reaction</th>
<th>µL/21 Reactions†</th>
</tr>
</thead>
<tbody>
<tr>
<td>10X Reverse Transcription Buffer</td>
<td>10</td>
<td>210</td>
</tr>
<tr>
<td>25X dNTPs</td>
<td>4</td>
<td>84</td>
</tr>
<tr>
<td>10X random primers</td>
<td>10</td>
<td>210</td>
</tr>
<tr>
<td>MultiScribe™ Reverse Transcriptase, 50 U/µL</td>
<td>5</td>
<td>105</td>
</tr>
<tr>
<td>Nuclease-free water</td>
<td>21</td>
<td>441</td>
</tr>
<tr>
<td>Total</td>
<td>50</td>
<td>1050</td>
</tr>
</tbody>
</table>

† Each RT reaction is 100 µL (see below). If you need 5 µL cDNA for each of 104 PCR reactions (see “Preparing the Reaction Plate” on page 23), you will need 6 RT reactions. Extra volume (enough for one additional RT reaction) is included to account for pipetting losses, as well as extra cDNA for archiving.

The cDNA archive plate is then prepared by pipetting into each well:

- 50 µL of the RT master mix
- 30 µL of nuclease-free water
- 20 µL of RNA sample (bringing the total starting amount of RNA to 1 µg per 100 µL reaction)

The RNA is then converted to cDNA using the thermal cycling parameters for two-step RT-PCR, as described in “Thermal Profile Parameters for RT” on page 19.

The cDNA is stored at −20 °C until use.

Notes

Relative Quantitation Using Comparative C_T Assay Getting Started Guide for the 7900HT Fast System
Preparing the PCR Master Mix

The second step (PCR) in the two-step RT-PCR procedure is amplifying the cDNA. You can use the TaqMan® Universal PCR Master Mix (2X) reagents for a run time of approximately 2 hours, or the TaqMan® Fast Universal PCR Master Mix (2X), No AmpErase UNG for a run time of approximately 35 minutes.

If you design primers and probes using Primer Express software, you must adjust their concentrations for optimal performance, with the universal assay conditions, as specified in the applicable protocols or using the volumes listed in the tables below. All TaqMan® Gene Expression Assays and Custom TaqMan® Gene Expression Assays are formulated so that the final concentration of the primers and probes are within the recommended values.

Note: The reaction volumes for TaqMan® Gene Expression Assays and Custom TaqMan® Gene Expression Assays are included on the CD which accompanies these products.

The following table lists the universal assay conditions (volume and final concentration) for using the TaqMan Universal PCR Master Mix (2X).

<table>
<thead>
<tr>
<th>Reaction Component</th>
<th>µL/ Sample 96-Well Plate</th>
<th>µL/ Sample 384-Well Plate</th>
<th>Final Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>TaqMan Universal PCR Master Mix (2X)</td>
<td>25.0</td>
<td>10.0</td>
<td>1X</td>
</tr>
<tr>
<td>Forward primer</td>
<td>5.0</td>
<td>2.0</td>
<td>50 to 900 nM</td>
</tr>
<tr>
<td>Reverse primer</td>
<td>5.0</td>
<td>2.0</td>
<td>50 to 900 nM</td>
</tr>
<tr>
<td>TaqMan probe</td>
<td>5.0</td>
<td>2.0</td>
<td>50 to 250 nM</td>
</tr>
<tr>
<td>cDNA sample</td>
<td>5.0</td>
<td>2.0</td>
<td>10 to 100 ng</td>
</tr>
<tr>
<td>Nuclease-free water</td>
<td>5.0</td>
<td>2.0</td>
<td>—</td>
</tr>
<tr>
<td>Total</td>
<td>50.0</td>
<td>20.0</td>
<td>—</td>
</tr>
</tbody>
</table>

CHEMICAL HAZARD. TaqMan Universal PCR Master Mix (2X) may cause eye and skin irritation. Exposure may cause discomfort if swallowed or inhaled. Read the MSDS, and follow the handling instructions. Wear appropriate protective eyewear, clothing, and gloves.
The following table lists the universal assay conditions (volume and final concentration) for using the TaqMan Fast Universal PCR Master Mix (2X).

CHEMICAL HAZARD. TaqMan Fast Universal PCR Master Mix (2X), No AmpErase UNG may cause eye and skin irritation. Exposure may cause discomfort if swallowed or inhaled. Read the MSDS, and follow the handling instructions. Wear appropriate protective eyewear, clothing, and glove.

<table>
<thead>
<tr>
<th>Reaction Component</th>
<th>µL/ Sample Fast 96-Well Plates</th>
<th>Final Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>TaqMan Fast Universal PCR Master Mix (2X), No AmpErase UNG</td>
<td>10.0</td>
<td>1X</td>
</tr>
<tr>
<td>Forward primer</td>
<td>2.0</td>
<td>50 to 900 nM</td>
</tr>
<tr>
<td>Reverse primer</td>
<td>2.0</td>
<td>50 to 900 nM</td>
</tr>
<tr>
<td>TaqMan probe</td>
<td>2.0</td>
<td>50 to 250 nM</td>
</tr>
<tr>
<td>cDNA sample</td>
<td>2.0</td>
<td>10 to 100 ng</td>
</tr>
<tr>
<td>Nuclease-free water</td>
<td>2.0</td>
<td>—</td>
</tr>
<tr>
<td>Total</td>
<td>20.0</td>
<td>—</td>
</tr>
</tbody>
</table>
Preparing the Reaction Plate

Standard and Fast Plates

IMPORTANT! Make sure that the correct block, for the plate being run, is installed in the 7900HT Fast System. Fast plates do not fit into standard blocks and standard plates do fit into fast blocks. Using a plate with the wrong block will result in damage to the plate, loss of data, or both.

To Prepare the Reaction Plate:

1. Ensure that you have an endogenous control for each sample type (for example, each tissue in a study comparing multiple tissues) on a plate. If samples are spread across multiple plates, each plate must have an endogenous control.

2. Into each well of a:
 - Standard reaction plate, add 50 µL (96-well) or 20 µL (384-well) of the appropriate PCR reaction mix
 - Fast reaction plate, add 20 µL of the appropriate PCR reaction mix

3. Seal the reaction plate with an ABI PRISM® Optical Adhesive Cover.

4. Centrifuge the plate briefly.
5. Verify that each reaction mix is positioned at the bottom of the well, as shown below.

<table>
<thead>
<tr>
<th>Correct Position</th>
<th>Incorrect Positions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>The reaction mix is at the bottom of the well.</td>
<td>The reaction mix lies on the side wall; the plate was not centrifuged.</td>
</tr>
<tr>
<td>An air bubble is at the bottom of the well because the plate was not centrifuged with sufficient force or for sufficient time.</td>
<td></td>
</tr>
</tbody>
</table>

IMPORTANT! If you are using *TaqMan Fast Universal PCR Master Mix (2X), No AmpErase UNG*, you must start the run within 2 hours of preparing the reaction plate. The plate can be refrigerated or stored frozen if a run is not started within 2 hours of plate setup.

6. Keep the reaction plates on ice until you are ready to load them into the Zymark® Twister Microplate Handler.
Sample Experiment

Primers and probes for the example RQ experiment are obtained from the TaqMan Gene Expression Assays product line and are provided as a 20X Gene Expression Assay Mix. The PCR reaction mix is prepared as follows:

<table>
<thead>
<tr>
<th>PCR Reaction Component</th>
<th>µL/ Sample</th>
<th>µL/ 5 Reactions†</th>
<th>Final Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>TaqMan Universal PCR Master Mix (2X)</td>
<td>10.0</td>
<td>50.0</td>
<td>1X</td>
</tr>
<tr>
<td>20X Gene Expression Assay Mix†</td>
<td>1.0</td>
<td>5.0</td>
<td>1X</td>
</tr>
<tr>
<td>cDNA sample</td>
<td>2.0</td>
<td>10.0</td>
<td>50 ng (for the 50-µL reaction)</td>
</tr>
<tr>
<td>Nuclease-free water</td>
<td>7.0</td>
<td>35.0</td>
<td>—</td>
</tr>
<tr>
<td>Total</td>
<td>20.0</td>
<td>100.0</td>
<td>—</td>
</tr>
</tbody>
</table>

† Contains forward and reverse primers and labeled probe.
‡ 24 master mixes are prepared, one for each of the 7 target genes (and each of the 3 samples) plus the endogenous control. Volume for five reactions (4 replicates plus extra) to account for pipetting losses.

Samples and endogenous controls are arranged on one plate as shown below. 20 µL of PCR master mix containing cDNA are added to each well.

The reactions are kept on ice until the plates are loaded onto the 7900HT Fast System.
Creating RQ Plates and Generating Data

About RQ Plate Documents

Performing an RQ Run

Analyzing and Viewing the RQ Data

Reanalyzing Data

Post-Analysis Options

See page 28

See page 35

See page 40

See page 44

See page 45

Introduction

Designing an RQ Experiment

Preparing the Samples and Reaction Plate

Creating RQ Plates and Generating Data

Analyzing and Viewing RQ Study Data in RQ Manager 1.2

Notes
About RQ Plate Documents

Creating Plate Documents

Every RQ reaction plate must have a corresponding RQ Plate document. An RQ Plate document stores data collected from an RQ run (for a single reaction plate) including sample names and detectors.

This chapter describes how to create a new plate document using the New Plate Wizard. Refer to Help > SDS Online Help for other methods of creating new plate documents.

Reaction Plate Options

The RQ assay can be run on standard 96-well, fast 96-well, standard 384-well, and TaqMan Low Density Array reaction plates. For clarity, this chapter only illustrates the running of a standard 384-well reaction plate.

Run Setup Requirements

For each RQ plate document that you create, specify detectors, endogenous controls, and detector tasks:

- A detector is a virtual representation of a gene-specific nucleic acid primer and probe combination used in assays. You specify which detector to use for each target sequence.

IMPORTANT! To compare data from multiple reaction plates in a study, all the plates in the study must contain a common set of detectors.

- An endogenous control(s) is defined in “Selecting the Chemistry” on page 13. If your experiment consists of multiple plates, each plate must have at least one endogenous control with at least three replicates. If your experiment consists of a single plate with multiple samples, you must have an endogenous control for each sample. All plates in an RQ experiment must use the same endogenous control (for example, GAPDH).

- A detector task specifies how the software analyzes the data collected from a well during analysis. You apply one of two tasks to each detector in each well of an RQ plate document.

<table>
<thead>
<tr>
<th>Detector Task</th>
<th>Symbol</th>
<th>Apply to well that contain...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>T</td>
<td>Target sequences.</td>
</tr>
<tr>
<td>Endogenous Control</td>
<td>E</td>
<td>Endogenous control sequence.</td>
</tr>
</tbody>
</table>
Creating an RQ Plate Document

You can enter sample information into a new plate document, import sample information from existing plate documents, or use a template document to set up new plate documents. This section describes setting up new plate documents using the plate wizard to manually enter sample information. Refer to the SDS Online Help for information about importing sample information or using template documents.

To create a new plate document:

1. Double-click \[\text{Plate Document} \].

2. If your System Administrator has enabled the login option, the Login dialog box appears. Enter your User Name and Password, then click OK.

 Note: If the login option is not enabled, no Login dialog box appears. Skip to step 3 below.

3. Click \[\text{File} \] > \[\text{New} \] Plate Wizard to open the Create Plate Document Wizard.

4. Select the assay type:

 a. Select $\Delta \Delta C_T \text{ (RQ)}$. Note that you can choose to add the document to the automation queue.

 b. Click Next >.
5. Enter the plate information:
 a. Select your **Plate Type**.

 IMPORTANT! You cannot use RQ Plate documents for AQ assays and vice versa. The information stored in AQ and RQ Plate documents is not interchangeable.

 b. **Optional.** In the barcode field, scan or (or manually enter) the plate barcode. If you are using the Zymark® Twister Microplate Handler and are running more than one plate, click the checkbox box next to **Add document to automation queue**. The Automation Controller software will automatically pull up the plate document information.

 Note: A barcode is also required if you are adding the plate document to the automation queue.

 c. Select to **Create Document From** your preferred source.

 Note: You can create a blank plate document or use existing information from a template or setup file. For more information on other methods of creating plate documents, refer to the **SDS Online Help**.

 d. Click **Next >**.

6. Enter the samples to use in the plate:

 Note: Samples can be added from an Existing Plate document. To add samples using this option, refer to the **SDS Online Help**.

 a. Double-click in the Sample field, and type a sample name.

 b. **Optional.** Press Enter to activate another row and add more samples.
Note: To remove a sample, select the sample by clicking on it, then click **Clear Selected**.

7. Enter detectors to use in the plate document.

Note: Detectors can be added from an Existing Plate document, the Detector Manager, or an Assay Information File. To add detectors using these options, see *SDS Online Help*.

- Click **Create Detectors** to open the Add Detector dialog box.
- In the Add Detector dialog box, enter a name for the detector (for example CCKAR).

IMPORTANT! The name of the detector must be unique and should reflect the target locus of the assay (such as GADPH). Do not use the same name for multiple assays.

- Optional. Click in the **Group** field, then assign a group name to the detector.
- Optional. Click in the **Description** field, then enter a brief description of the detector.
- Optional. Leave the AIF Assay ID field blank. For more information on Assay Information Files (AIF), refer to *SDS Online Help*.

Notes

Relative Quantitation Using Comparative C_T Assay Getting Started Guide for the 7900HT Fast System
f. Select the appropriate dyes for the detector in the Reporter and Quencher drop-down lists. Select **TAMRA** as the quencher for TaqMan probes and **None** for TaqMan MGB probes.

Note: If the dye you want to use does not appear in the list, from the menu bar select **Tools > Dye Manager** to add the dye. Note that your instrument must also be calibrated for that dye. For more information on using the Dye Manager, refer to **SDS Online Help** for more information.

g. Click the **Color** box to open the Select Detector Color dialog box, then select a color to represent the detector. Click **OK** to return to the Add Detector dialog box.

h. **Optional.** Enter any comments for the detector in the Notes field.

i. Click **OK**. The SDS software saves the new detector and displays it in the Detectors to Use in Plate pane of the wizard.

j. To create additional detectors, repeat steps a through step h.

Note: To remove a detector from the Detectors to Use in Plate pane, select the detector, then click **Clear Selected**.

k. Click **Next >**.

8. Specify the samples, detectors, and tasks for each well.
a. From the Plate Layout drop-down list, select **Individual Wells**. Refer to the *SDS Online Help* for more information on plate layout options.

IMPORTANT! If you change the plate layout after assigning samples or detectors to the wells, all assignment are cleared from the plate grid.

b. Select the **Add Samples and Detectors** tab.

c. Click on a well (or group of wells, for replicates) to select it. To select all wells, click in top left corner of the grid.

d. Check the appropriate detector name(s), for the selected well(s), in the Detectors in Selected Wells pane. Note that a “d” appears in the selected well(s).

e. Check the appropriate sample name for the selected well(s) in the Samples in Selected Wells pane. Note that an “s” appears in the selected well(s).

f. Click into the Task field (next to each detector) to assign the detector task.

g. Assign samples and detectors for the remaining wells (repeat steps 8c through 8f).

h. **Optional.** Click on the Well Inspector tab to review your plate setup.

Note: You can change the sample setup information (sample name, detector, task) after a run is complete.

9. Click **Finish**. The Create Plate Document Wizard closes and a new RQ plate document appears in the main SDS software window. If your experiment does not use all the wells on a
About RQ Plate Documents

Notes

Sample Experiment

In the example RQ experiment, the samples for each of the three tissues (adipose, kidney, and muscle) are loaded on one plate.

Because the experiment is singleplex, the reaction in each well detects only one sequence—either a target sequence or endogenous control—in each well. Each well is associated with a detector (indicated by the colored squares). Additionally, each well is assigned a detector task Target or Endogenous Control.

The figure below shows the example RQ Plate document after sample names, detectors, and detector tasks are assigned for each well in the plate.

![Sample RQ File - Relative Quantification](image)

Well Color
Detector Name, Detector Color, and Task
Sample Name
Performing an RQ Run

Verifying Default Thermal Cycling Conditions for PCR

If you selected the two-step RT-PCR method for your RQ experiment (recommended), you have already completed the RT step. At this point in the workflow, you are ready to PCR amplify cDNA.

The default thermal cycling conditions for the PCR step of the procedure, shown in the following table, should appear in the Instrument > Thermal Profile tab.

<table>
<thead>
<tr>
<th>Standard 96-Well</th>
<th>Standard 384-Well</th>
<th>Fast 96-Well</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Volume (µL):</td>
<td>Sample Volume (µL):</td>
<td>Sample Volume (µL):</td>
</tr>
<tr>
<td>50</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

Note: For information on thermal cycling conditions and parameters for TaqMan Low Density Arrays, refer to TaqMan® Low Density Array Getting Started Guide (PN 4319399).

<table>
<thead>
<tr>
<th>Standard Default Times and Temperatures (Two-step RT-PCR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) RT Step</td>
</tr>
<tr>
<td>HOLD</td>
</tr>
<tr>
<td>10 min @ 25 °C</td>
</tr>
<tr>
<td>HOLD</td>
</tr>
<tr>
<td>120 min @ 37 °C</td>
</tr>
<tr>
<td>* For reference only. RT is complete at this point.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Standard Thermal Cycling Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2) PCR Step</td>
</tr>
<tr>
<td>Initial Steps</td>
</tr>
<tr>
<td>AmpErase® UNG Activation</td>
</tr>
<tr>
<td>2 min @ 50 °C</td>
</tr>
<tr>
<td>AmpErase® UNG Activation</td>
</tr>
<tr>
<td>10 min @ 95 °C</td>
</tr>
<tr>
<td>AmpliTaq Gold® DNA Polymerase Activation</td>
</tr>
<tr>
<td>Melt</td>
</tr>
<tr>
<td>15 sec @ 95 °C</td>
</tr>
<tr>
<td>Anneal/Extend</td>
</tr>
<tr>
<td>1 min @ 60 °C</td>
</tr>
</tbody>
</table>
Chapter 4 Creating RQ Plates and Generating Data
Performing an RQ Run

36
Relative Quantitation Using Comparative Ct Assay Getting Started Guide for the 7900HT Fast System

Notes

Fast Default Times and Temperatures (Two-step RT-PCR)

<table>
<thead>
<tr>
<th>1) RT Step</th>
<th>Enzyme Activation</th>
<th>Melt</th>
<th>Anneal/Extend</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOLD</td>
<td>HOLD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 min @ 25 °C</td>
<td>120 min @ 37 °C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* For reference only. RT is complete at this point.

Fast Thermal Cycling Conditions

<table>
<thead>
<tr>
<th>2) PCR Step</th>
<th>Enzyme Activation</th>
<th>Melt</th>
<th>Anneal/Extend</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOLD</td>
<td>CYCLE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 sec @ 95 °C</td>
<td>1 sec @ 95 °C</td>
<td>20 sec @ 60 °C</td>
<td></td>
</tr>
</tbody>
</table>

Thermal Cycling Conditions for One-Step RT-PCR (Standard 96-Well Plates)

If you select the one-step RT-PCR method, cDNA generation and amplification take place simultaneously at this point in the workflow.

The following table shows the thermal cycling conditions for one-step RT-PCR experiments.

Note: Refer to the *SDS Online Help* for instructions on modifying thermal cycling parameters.

Times and Temperatures (One-step RT-PCR)

<table>
<thead>
<tr>
<th>Initial Steps</th>
<th>PCR (Each of 40 Cycles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reverse Transcription</td>
<td>AmpliTaq® Gold DNA Polymerase Activation</td>
</tr>
<tr>
<td>HOLD</td>
<td>HOLD</td>
</tr>
<tr>
<td>30 min @ 48 °C</td>
<td>10 min @ 95 °C</td>
</tr>
<tr>
<td></td>
<td>Melt</td>
</tr>
<tr>
<td></td>
<td>15 sec @ 95 °C</td>
</tr>
<tr>
<td></td>
<td>Anneal/Extend</td>
</tr>
<tr>
<td></td>
<td>1 min @ 60 °C</td>
</tr>
</tbody>
</table>
Modifying Settings for TaqMan® Universal PCR Master Mix, No AmpErase® UNG

In the Thermal Profile tab, delete the default Stage 1 by clicking inside the stage to select it (the ramp line turns red), then click **Delete Step**.

![Delete Step](image)

Saving the Plate Document

To save the new plate document.

1. Select File > **Save As** to open the Save As dialog box.

![Save As](image)

2. In the Save In field, navigate to and select a directory to save the plate document.

3. In the File name field, enter a file name for the plate document.

4. From the Files of type drop-down list, select SDS 7900HT Document (*.sds), then click **Save**.

5. **Optional.** If you want to use this plate setup again, you can save it as a template. Select File > **Save As**, type a file name, then select Files of type: (*.sdt).

Note: Refer to the *SDS Online Help* for information about using plate document templates and setup files.

Notes

Relative Quantitation Using Comparative C_T Assay Getting Started Guide for the 7900HT Fast System
Starting the Run

Before starting the run:

1. Verify that:
 - For two-step RT-PCR – The default PCR thermal cycling conditions are set.
 - For one-step RT-PCR, you set the thermal cycling parameters as shown in “Thermal Cycling Conditions for One-Step RT-PCR (Standard 96-Well Plates)” on page 36.
 - Sample volume is correct.
 - Correct run mode is selected: Standard, Fast, or 9600 Emulation.

 Note: When Standard mode is selected, the SDS software uses the 9700 thermal cycler ramp rate in the 7900HT Fast System for standard PCR reactions. When Fast mode is selected, the SDS software uses the fastest available ramp rate of the 7900HT Fast System for fast PCR reactions. When the 9600 Emulation mode is selected, the SDS software reduces the 7900HT Fast System ramp rate to match that of the 9600 thermal cycler in the ABI PRISM® 7700 Sequence Detection System.

 Note: If you are using SYBR Green I reagent chemistry and you want to determine if there is contamination or if you want to determine the dissociation temperature, create a separate Dissociation assay or template. Refer to the SDS Online Help for more information.

2. To run an individual plate:
 a. Select the Instrument > Real-Time tab.
 b. Click Connect to Instrument to connect the plate document to the instrument.
 c. Optional. Click Open/Close. The instrument tray rotates to the OUT position.
 d. Load the reaction plate into the instrument tray.

 IMPORTANT! Orient the correct A1 position for Fast and Standard plates.

 e. Click Start Run. The instrument tray rotates to the IN position. During the run, the instrument, it displays real-time status information in the Instrument > Real-Time tab and records the fluorescence emissions.
f. *Optional.* View the data generated in real-time during the amplification run:

3. To run multiple plates, using the Automation Accessory, see Appendix B, “SDS Automation Controller Software,” on page 73.

After the run, the status values and buttons are grayed-out, the Analysis button is enabled (turns green).

All data generated during the run are saved to the RQ Plate document that you specified in step 2 on page 37.
Analyzing and Viewing the RQ Data

For the SDS software to analyze RQ Plate data after the run, click \(\text{ or select Analysis > Analyze.} \) The SDS software mathematically transforms the raw fluorescence data to establish a comparative relationship between the spectral changes in the passive reference dye and those of the reporter dyes.

Once the plate is analyzed, the SDS software displays the flags associated with each well in the plate grid (for more information on flags, see Appendix C, “Flags and Filtering for Relative Quantitation Using Comparative CT Plate Documents,” on page 81. It also displays the resulting plate data in a table underneath the plate grid. The Results tab displays the results data of each well, including an amplification plot with the calculated \(R_n \) value.

\[\text{Note:} \] You can configure the Results table entries. Click on \(\) (located above the table) or the drop down list (if a profile was previously created). Modify the table display settings accordingly (for more information, see the SDS Online Help). You can also sort each column by double-clicking on the desired column heading. To view additional columns, scroll to the right using the scroll bar.

About the Results Tab

In the Results tab, you can view the results of the run and manually adjust the baseline and threshold. Details on each tab are provided in the SDS Online Help.

- To move between views, click on a tab or the icons on the menu bar.

Notes
• To select all wells on a plate, click the upper-left corner of the plate well grid.
• To adjust amplification plot settings, double-click the y- or x-axes of a plot to display the Graph Settings dialog (note this option is not available in the Real-Time tab when the instrument is generating plot data). The adjustable settings depend on which plot you are viewing.

In the Results tab, you can see the amplification plot after the run is complete. Click on (System Raw Data Pane icon) to view the Raw Data tab and Calibration Data tabs.

Raw Data Plot Tab

Here you can view a plot of the raw data.
Calibration Data Tab

Here you can view background and pure dye data.

Click on (Multicomponent Data Pane icon) to view the Multicomponent plot.

Notes
You can view all of this information in multiple pane format. See figure below.

QC Summary Tab
The QC Summary tab details the status of wells that were processed and flagged.
Reanalyzing Data

Raw fluorescence data, R_n values, and well information (sample name, detector, and detector task) are saved in an RQ plate document.

Note: After the software analyzes data, the Analyze button is disabled (). Whenever you change a setting that requires reanalysis, the Analyze button is enabled ().

Omitting Samples

Experimental error may cause some wells to be amplified insufficiently or not at all. These wells typically produce C_T values that differ significantly from the average for the associated replicate wells. If included in the calculations, these outlying data (outliers) can result in erroneous measurements.

To ensure precision, carefully view replicate groups for outliers. You can remove outliers manually using the C_T vs. Well Position Amplification Plot. If you decide to omit wells or change well information after a run is complete, you must reanalyze the data.

For more information about omitting samples, refer to the *SDS Online Help*.
Post-Analysis Options

The following options are available after the analysis:

- **Exporting Data as Text Files** (below)
- **Exporting Data as Graphic Files** (page 46)
- **Printing a Data Report** (page 47)

Exporting Data as Text Files

You can export raw or analyzed data from plate documents into tab-delimited text files (*.txt). The text files can then be imported into spreadsheet software, such as Microsoft® Excel software.

1. Open the plate document from which you wish to export data.
2. Select **File > Export** to open the Export dialog box.
3. In the Look in field, navigate to and select a directory for the new file.
4. From the Export drop-down list, select the data type to export.

 Note: For more information about the data type options, see the **SDS Online Help**.

5. Select to export data from **All Wells** or a select group of wells (**Selected Wells**).

 Note: To use the Selected Wells option, you must select a subset of wells in the plate document before opening the Export dialog box.

6. From the Format options, select the appropriate software version.

7. **Optional.** Check **Save Settings As My Default.** Check this option if you want the SDS software to automatically apply the current settings every time you export data as a text file.
8. In the File name field, type a name for the new file.

Note: The name of the dialog box depends on the type of data you selected to export.

9. From the Files of type drop-down list, select **Tab-delimited Text (*.txt)**.

10. Click **Export**. The software exports the new file to the specified directory.

Exporting Data as Graphic Files

You can export the plate grid and plot images from plate documents as Joint Photographic Experts Group (JPEG) graphic files (*.jpeg). The JPEG files can then be viewed in most common word processing, spreadsheet, and HTML-based software.

1. Open the plate document from which you wish to export data.

2. To export the:
 - Plate grid, right-click in the plate grid, then select **Save Grid to Image File**. The Save dialog box appears.
 - Plot, right-click in the plot, then select **Save Plot to Image File**. The Save dialog box appears.

Note: If desired, adjust the plot dimensions (length and width) as you want them to appear in the exported file. The exported file retains the dimensions of the original screen element.
3. Complete the Save dialog box:

 a. In the Save in field, navigate to and select a directory for the new file.

 b. In the File name field, type a name for the new file.

 c. From the Files of type drop-down list, select JPEG File.

 d. Click Save. The software saves the new file to the specified directory.

Printing a Data Report

You can use the SDS software to print a report of the analyzed data containing individual or multiple elements of the plate document.

Note: For more information on printing reports, see the *SDS Online Help*.

1. Open the plate document from which you wish to print a report.

2. In the plate grid, select the wells you wish to include in the report.

3. Click (or select File > Print Report) to open the Print Report dialog box.

4. In the Include Data pane, select the plate document element(s) to print.
5. To format the display of the report and how the report is printed, click **Page Setup**.

6. **Optional.** Check **Save Settings As My Default**. Check this option if you want the SDS software to automatically apply the current settings every time you print a report.

7. **Optional.** Click **Preview** to view the report before printing it.

8. Click **Print**.

For more information, refer to the **SDS Online Help** for information about exporting files.
Analyzing and Viewing RQ Study Data in RQ Manager 1.2

Creating an RQ Study Document
See page 50

Analyzing RQ Study Data
See page 54

Analyzing and Viewing the Results of the RQ Study
See page 60

Reanalyzing an RQ Study
See page 64

Post-Analysis Options
See page 65

Notes

Relative Quantitation Using Comparative C_T Assay Getting Started Guide for the 7900HT Fast System
Creating an RQ Study Document

You can conduct a comparative analysis of RQ plates in a study or analyze a single RQ plate experiment, in RQ Manager 1.2 software. This functionality is a separate application from the main SDS software. In order to analyze and view RQ study data, you must first create an RQ Study document.

• The RQ Manager 1.2 software uses the comparative C_T method ($2^{-\Delta\Delta C_T}$) of relative quantitation. For more information about methods of calculating relative quantitation, refer to *Real-Time PCR Systems Chemistry Guide* (PN 4363978).

<table>
<thead>
<tr>
<th>In an RQ study, you can...</th>
<th>You cannot...</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Select the endogenous control and the calibrator sample.</td>
<td>• Create, add, or modify samples.</td>
</tr>
<tr>
<td>• Select the control type (if your plate contains both multiplexed and non-multiplexed reactions)</td>
<td>• Create, add, or modify detectors. (You can perform these operations in RQ Plate documents.)</td>
</tr>
<tr>
<td>• Set baseline and threshold values and RQ Min/Max Confidence Levels</td>
<td></td>
</tr>
<tr>
<td>• Omit individual wells or sample replicates.</td>
<td></td>
</tr>
</tbody>
</table>
To create an RQ Study document:

1. Double click on .

2. If your System Administrator has enabled the login option, the Login dialog box appears. Enter your User Name and Password, then click OK.

 Note: If the login option is not enabled, no Login dialog box appears. Skip to step 3 below.

 Note: To add plates to an existing study, go to “Adding Plates to an Existing Study:” on page 52.

4. In the New Study dialog box:
 a. select the Container type.
 b. Enter a name in the Study Name field.
 c. Click Add Plates.

5. In the Add Plates dialog box:
 a. Select the desired plate file(s) that you want to add to the study.
 b. Click Add > >.

 Note: You can add up to 10 RQ plates to an RQ study.

 IMPORTANT! All plates added to a study must have identical thermal cycling parameters—the same number of steps, cycles, sample volume, and emulation mode.

 c. After you add all the desired plates, click OK.

6. In the New Study dialog box, click OK.
Adding Plates to an Existing Study:

1. Select File > Load Study > From File.

2. Navigate to the location where your file is stored. Note that the study must have been saved as an *.sdm file. Click Open.

3. To add additional plates to the study go to step 5 on page 51.

The RQ Manager software opens a new RQ Study document and displays the RQ Study (detector centric view). Click on the left corner of the detector grid to view the amplification plot for all detectors.

Amplification Tab

In this tab, there are three different menu bar drop-down lists. You can select different formats to view the study information.

![Amplification Tab](image)

Table Orientation drop-down list allows you to view the information either in Detector Centric (the detectors appear at the top left of the screen), Sample Centric (the samples appear at the top left of the screen), or Plate Centric (the number of plates, associated flags and file name appear at the top left of the screen) formats.

Calibrator drop-down list allows you to select the tissue sample to be used as the calibrator.

Data drop down list allows you to select the data to display (Rn vs Cycle, ΔRn vs. Cycle, C_T vs. Well Position).
Gene Expression Tab

In this tab, there are three different menu bar drop-down lists. You can select different formats to view the study information.

Table Orientation drop-down list allows you to view the information either in Detector Centric (the detectors appear at the top left of the screen), Sample Centric (the samples appear at the top left of the screen), or Plate Centric (the number of plates, associated flags and file name appear at the top left of the screen) formats.

Calibrator drop-down list allows you to select the tissue sample to be used as the calibrator.

Graph Orientation drop-down list allows you to view Detectors or Samples.

Note: If your experiment uses only a single plate, there must be at least two different samples that have different names and have their own endogenous controls. (You can go back to a saved RQ Plate document and change the sample names, if necessary.)

Note: You can save the RQ Study document now, or wait until after specifying analysis settings and analyzing the data. To save the study, go to “Saving the RQ Study” on page 65.
Analyzing RQ Study Data

Starting the Analysis

For RQ Manager to analyze the RQ Study, click or select Analysis > Analyze All.

Configuring Analysis Settings

Before analyzing the resulting study data, specify parameter values for the analysis.

Unless you have already determined the optimal baseline and threshold settings for your experiment, use the default automatic baseline and threshold options of the RQ Manager software (Automatic CT). If the baseline and threshold were called correctly for each well, you can proceed to view the results. Otherwise, you can manually set the baseline and threshold as described on “Manually Setting Baseline and Threshold Settings” on page 56. This section describes how to use the Automatic CT feature.

Configuring Automatic Analysis Settings

1. Click or select Analysis > Analysis Settings.
2. Select the Study tab.
3. In the Endogenous Control Detector drop-down list, select the desired detector.
4. In the RQ Min/Max Confidence drop down list, select the desired percentage. For more information, see the SDS Online Help.
5. In the Flag Condition and Omit Settings panel, select or deselect the appropriate flags. For more information, see the SDS Online Help.
6. Select the Detector tab.

Notes
7. Select **Automatic Ct**. The RQ Manager software will automatically generate baseline values for each well and threshold values for the selected detector. Note that, alternatively, you can select Manual Ct and specify the threshold and select Automatic Baseline or Manual Baseline (see “Manually Setting Baseline and Threshold Settings” on page 56).

IMPORTANT! After analysis, you must verify that the baseline and threshold were called correctly for each well by clicking on the well in the detector grid and viewing the resulting plots.

8. Select **OK**.

9. Select **Play** or **Analyze**.

10. Select the Amplification or Gene Expression tab and examine the results.
Adjusting the Baseline and Threshold

Automatic Baseline and Threshold Determination

The SDS software calculates baseline and threshold values for a detector based on the assumption that the data exhibit the “typical” amplification curve.

A typical amplification curve has a:

- Plateau phase (a)
- Linear phase (b)
- Exponential (geometric phase) (c)
- Background (d)
- Baseline (e)

Experimental error (such as contamination, pipetting errors, and so on) can produce data that deviate significantly from data for typical amplification curves. Such atypical data cause the software algorithm to generate incorrect baseline and threshold values for the associated detector.

Therefore, Applied Biosystems recommends reviewing all baseline and threshold values after analysis of the study data. If necessary, adjust the values manually as described below.

Manually Setting Baseline and Threshold Settings

1. Click or select **Analysis > Analysis Settings**.
2. Select the Study tab.
3. In the Endogenous Control Detector drop-down list, select the desired detector.
4. In the RQ Min/Max Confidence drop down list, select the desired percentage. For more information, see the *SDS Online Help*.
5. In the Flag Condition and Omit Settings panel, select or deselect the appropriate flags. For more information, see the *SDS Online Help*.

Notes

Relative Quantitation Using Comparative C\(_T\) Assay Getting Started Guide for the 7900HT Fast System
6. Select the Detector tab.

7. Select Manual Ct.

8. Enter a threshold value in the Threshold field.

9. Select Automatic Baseline or Manual Baseline. If setting the baseline manually, specify the Start and End cycles.

10. Click Apply to view the new setting adjustments on the plate document but keep the Analysis Settings dialog box open. Alternatively, click OK to apply the new settings and close the dialog box.

IMPORTANT! After analysis, you must verify that the baseline and threshold were called correctly for each well by clicking on the well in the plate grid and viewing the resulting plots.
See the sample amplification plots below to determine whether the baseline and threshold settings were correctly set.

Baseline Set Correctly
The amplification curve begins after the maximum baseline. No adjustment necessary.

Baseline Set Too Low
The amplification curve begins too far to the right of the maximum baseline. Increase the End Cycle value.

Baseline Set Too High
The amplification curve begins before the maximum baseline. Decrease the End Cycle value.
Threshold Set Correctly

The threshold is set in the exponential phase of the amplification curve.

Threshold settings above or below the optimum increase the standard deviation of the replicate groups.

Threshold Set Too Low

The threshold is set below the exponential phase of the amplification curve. The standard deviation is significantly higher than that for a plot where the threshold is set correctly. Drag the threshold bar up into the exponential phase of the curve.

Threshold Set Too High

The threshold is set above the exponential phase of the amplification curve. The standard deviation is significantly higher than that for a plot where the threshold is set correctly. Drag the threshold bar down into the exponential phase of the curve.
Analyzing and Viewing the Results of the RQ Study

Selecting Detectors to Include in Results Graphs

In the Detector table, select detectors to include in the result graphs by clicking a detector. (Ctrl-click to include multiple detectors; Click-drag to include multiple adjacent detectors.) The corresponding samples appear in the Sample grid. Depending on which tab you select Amplification Plot or Gene Expression analysis results are displayed.

Sample Experiment

Suppose that you want to view the comparative gene expression levels of the following genes when adipose is used as the calibrator: CCKAR, GH, CCR2, LEPR, LPIN1, TGFb, PCSK1, and HL. Selecting the detectors in the RQ Detector grid (1) displays the sample information in the RQ Sample grid (2) and in a result graph in the Gene Expression tab (3). Note that:

- The Gene Expression tab is selected, and the gene expression levels are sorted by detector.
- Gene expression levels for muscle samples are indicated by the green bar; those for kidney samples by the blue bar. These colors also indicate the samples in the RQ Sample Grid and the RQ Results Panel plots.
- Because adipose samples are used as calibrators, the expression levels are set to 1. But because the gene expression levels were plotted as log10 values (and the log10 of 1 is 0), the expression level of the calibrator samples appear as 0 in the graph.
- Because the relative quantities of the targets are normalized against the relative quantities of the endogenous control, the expression level of the endogenous control is 0; there are no bars for GAPDH.
- Fold-expression changes are calculated using the equation $2^{-\Delta\Delta CT}$.

Notes
Amplification Plot The three Amplification Plots allow you to view post-run amplification of specific samples. The Amplification Plots display all samples for selected detectors.

You can adjust graph settings selecting Analysis > Graph Settings.

Rn vs. Cycle View
Displays normalized reporter dye fluorescence (Rn) as a function of cycle. You can use this plot to identify and examine irregular amplification.

For more information about Rn, refer to the Real-Time PCR Systems Chemistry Guide.

ΔRn vs. Cycle (Log) View
Displays dye fluorescence (ΔRn) as a function of cycle number. You can use this plot to identify and examine irregular amplification and to manually set the threshold and baseline parameters for the run.

C_T vs. Well Position View
Displays threshold cycle (C_T) as a function of well position. You can use this plot to locate outliers from detector data sets (see “Omitting Samples from a Study” on page 65 for more information).
Gene Expression Plot

Gene Expression plots show the expression level or fold-difference of the target sample relative to the calibrator.

Because the calibrator is compared to itself, the expression level for the calibrator is always 1.

Adjusting Graph Settings

You can adjust graph settings for gene expression plots in the Graph Settings dialog box, including Autoscaling for the X- and Y-Axes and Bar Width.

To access the Graph Settings, select Analysis > Graph Settings. Refer to the SDS Online Help for more information about adjusting these graph settings.

Gene Expression Plot Graph Orientation:
Detector

Detectors are plotted on the x-axis, and each bar shows the RQ value of a replicate sample group.

Gene Expression Plot Graph Orientation:
Sample

Samples are plotted on the x-axis, and each bar shows the set of RQ values of a replicate group.
The RQ Manager software displays error bars for each column in the plot, provided that the associated expression level was calculated from a group of two or more replicates. The error bars display the calculated maximum (RQMax) and minimum (RQMin) expression levels. Collectively, the upper and lower limits define the region of expression within which the true expression level value is likely to occur.

The RQ Manager software calculates the error bars based on the RQMin/Max Confidence Level in the Analysis Settings dialog box.
Reanalyzing an RQ Study

If you change any of the analysis settings, you must reanalyze the data before you can view results. You can switch between the variations of the Amplification and Gene Expression plots without having to reanalyze the data.

Suppose you select Adipose as the calibrator, then perform an analysis. Next, you view the Amplification and Gene Expression plots. If you then want to use Kidney or Muscle as the calibrator, you need to reanalyze the data before viewing results.

Similarly, if you want to change the baseline or threshold values, the endogenous control, the control type, or the RQ Min/Max parameters, you need to reanalyze your data.

<table>
<thead>
<tr>
<th>Calibrator</th>
<th>Gene Expression Plot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adipose</td>
<td></td>
</tr>
<tr>
<td>Kidney</td>
<td></td>
</tr>
<tr>
<td>Muscle</td>
<td></td>
</tr>
</tbody>
</table>
Omitting Samples from a Study

Experimental error may cause some wells to amplify insufficiently or not at all. These wells typically produce C_T values that differ significantly from the average for the associated replicate wells. If included in the calculations, these outlying wells (outliers) can result in erroneous measurements.

To ensure precise Comparative C_T, you must carefully view replicate groups for outliers. You can remove outliers manually using the C_T vs. Well Position Amplification Plot. If you decide to omit wells or change well information after a run is complete, you must reanalyze the data.

For more information on how to omit samples, see the SDS Online Help.

Post-Analysis Options

Saving the RQ Study

You must save the Study before exporting data.

1. Select File > Save As. The Save SDS 2.x RQ Study file dialog box opens.

2. Enter a name in the File name field box.

3. Click Save.

Exporting RQ Study Data

You can export numeric data from RQ studies into text files, which can then be imported into spreadsheet applications.

1. Select File > Export, then select the data type to export:
 - Amplification Data
 - Expression Data
 - Clip Data
 - Results Data

2. Enter a file name for the export file.

3. Click Save.

For more information, see the SDS Online Help.
Sample RQ Experiment

In the example RQ experiment, a detector is created for each target gene and the endogenous control. Eight detectors are created: 7 for the target genes and 1 for the endogenous control, GAPDH.

For example, the detector for the cholecystokinin A receptor gene is named CCKAR and assigned a green color. Because all TaqMan Gene Expression Assays have probes that are labeled with FAM™ dye, FAM was selected for the reporter dye. Additionally, TaqMan Gene Expression Assays use TaqMan MGB probes, which use non fluorescent quenchers. Thus, "None" is selected for the quencher dye.

Note: This experiment is a general example provided by Applied Biosystems and is intended to be used for familiarizing yourself with the software. Note that this procedure will be different for Low Density Arrays.

1. Design the experiment, as explained in Chapter 2 on page 9.
 a. Designate the targets, calibrator, endogenous control, and replicates.
 b. Order the reagents for TaqMan® probe-based chemistry.
 c. Order the appropriate TaqMan® Gene Expression Assays products, which provide predesigned primers and probes for the 7 genes.

2. Isolate total RNA from adipose, kidney, and muscle tissue, as explained in Chapter 3 on page 18.

3. Generate cDNA from total RNA using the High Capacity cDNA Archive Kit.
Appendix A
Sample RQ Experiment

a. Prepare the reverse transcription (RT) master mix as indicated in the table to the right. Additional guidelines are provided in the High Capacity cDNA Archive Kit Protocol.

⚠️ WARNING CHEMICAL HAZARD. 10X RT Buffer may cause eye, skin, and respiratory tract irritation. Read the MSDS, and follow the handling instructions. Wear appropriate protective eyewear, clothing, and gloves.

<table>
<thead>
<tr>
<th>RT Master Mix - Standard Plate</th>
<th>µL/Reaction</th>
<th>µL/21 reactions†</th>
</tr>
</thead>
<tbody>
<tr>
<td>10X Reverse Transcription Buffer</td>
<td>10</td>
<td>210</td>
</tr>
<tr>
<td>25X dNTPs</td>
<td>4</td>
<td>84</td>
</tr>
<tr>
<td>10X random primers</td>
<td>10</td>
<td>210</td>
</tr>
<tr>
<td>MultiScribe™ Reverse Transcriptase, 50 U/µL</td>
<td>5</td>
<td>105</td>
</tr>
<tr>
<td>Nuclease-free water</td>
<td>21</td>
<td>441</td>
</tr>
<tr>
<td>Total</td>
<td>50</td>
<td>1050</td>
</tr>
</tbody>
</table>

† Each RT reaction is 100 µL (see step 3b). If you need 5 µL cDNA for each of 104 PCR reactions per tissue (see step 4), you need 6 RT reactions per tissue. Extra volume (enough for one additional RT reaction per tissue) is included to account for pipetting losses, as well as extra cDNA for archiving.

b. Prepare the cDNA archive plate by pipetting into each well of the plate:
 - 50 µL RT master mix
 - 30 µL nuclease-free water
 - 20 µL RNA sample
Make sure the amount of total RNA converted to cDNA is 10 to 100 ng in 5 µL for each 50-µL PCR reaction.

![Adipose Kidney Muscle Diagram]

Step Type	Time	Temperature
HOLD | 10 min | 25 °C |
HOLD | 120 min | 37 °C |

Note: You have the option to use one-step RT-PCR, as explained in “Selecting One- or Two-Step RT-PCR” on page 14.

d. Store the cDNA at –20 °C until use.
4. Prepare the PCR master mix (see Chapter 4 on page 28 for more information).

Note: The reaction volumes for TaqMan® Gene Expression Assays and Custom TaqMan® Gene Expression Assays are included on the CD which accompanies these products. Those for primers and probes designed with Primer Express software follow the universal assay conditions described in Chapter 4.

CHEMICAL HAZARD. TaqMan Fast Universal PCR Master Mix (2X), No AmpErase UNG may cause eye and skin irritation. Exposure may cause discomfort if swallowed or inhaled. Read the MSDS, and follow the handling instructions. Wear appropriate protective eyewear, clothing, and gloves.

5. Prepare the reaction plate.
 a. Ensure that you include an endogenous control for each sample on the plate.
 b. Pipette 20 µL of the appropriate PCR master mix (containing cDNA) into each well of the standard 384-well plate.
 c. Keep the reaction plate on ice until you are ready to load them into the 7900HT Fast system.
6. Create an RQ Plate document as described in “Creating an RQ Plate Document” on page 29.

IMPORTANT! All plates added to a study must have identical thermal cycling parameters—the same number of steps, cycles, sample volume, emulation mode. Also, you cannot use AQ Plate documents for RQ assays and vice versa. The information stored in AQ and RQ Plate documents is not interchangeable.
- You cannot import an AQ plate into an RQ study.
- You cannot analyze your relative expression data directly in an RQ plate setup.
- You cannot run a standard curve or a dissociation curve in an RQ plate setup.
- You can only analyze relative expression data in an RQ study setup.

 a. Add sample names and detectors to the plate document.

 b. Specify the detectors and tasks for each well, then click **Finish**.

IMPORTANT! If your experiment does not use all the wells on a plate, do not omit the wells from use at this point. You can omit unused wells after the run is completed. For more information about omitting wells, refer to the Online Help.

7. Select **Instrument > Start**. After the run a message displays as to whether the run was successful or whether errors were encountered.

8. Click ▶ to analyze the results.

Notes
9. Analyze the RQ data, as explained in “Analyzing and Viewing the RQ Data” on page 40.

10. If desired, save the RQ Plate document.
SDS Automation Controller Software

Overview

The Sequence Detection Systems (SDS) Automation Controller Software v2.3 provides an interface between the Zymark® Twister Microplate Handler, the 7900HT Fast System, the fixed-position bar code reader, and the plate documents created in main Sequence Detection Systems Software v2.3.

This Automation Controller software controls and coordinates the action of the 7900HT instrument and the automation module. It initiates and controls the sequence detection run and acquires data during the run.

This option allows for plates to be run as part of a group or batch allowing for high-throughput unattended operation. For more information about the Automation Controller, refer to the SDS Online Help.

Using the Automation Controller Software

Note: Before launching the Automation Controller software, you must close the main Sequence Detection Systems Software v2.3 application. Failure to do so will result in an instrument connection failure.

1. Double click on the Automation Controller shortcut icon. An initialization pop-up will appear displaying the status of instrument connection and other verifications. If you encounter an error, refer to the SDS Online Help.
2. If you have already created and saved the desired plates (sent them to the queue) in the main SDS application, then the plates will appear in the Plate Queue tab. For more information about creating plate documents and sending them to the queue, refer to “Creating Plate Documents” on page 28.

![Automation Controller Software](image)

3. You can add plates by clicking Add Plates or (or click ![image]).

a. At the Open dialog box, navigate to the location where the plate files are located.

![Open Dialog Box](image)

b. Use the barcode reader to scan the Plate IDs. Note that you can automatically scan the next plate without having to select Add Plates again. You can also save the list of queued plates, by clicking Save List.

Note: To remove a plate, click on the plate name then click Remove. To remove all plates, click Remove All.
4. Place the plates in the input stack of the Zymark® Twister Microplate Handler. The order of the plates may vary from the order they were scanned in (the Handler’s fixed barcode reader will verify the location of each plate). The software matches the plate document and the method before it starts the run. Orient the plates inside the stacks so that the well A1 of each plate corresponds to the locations shown in the figure below.

5. Click into the boxes next to each stack location where the plates are located.

6. Select **Tools > Batch Settings** to specify the desired output settings.
 a. In the Batch Settings dialog box, at the Auto-Analysis Workflow tab, click into a box to select that export option. You can also change the export directory by clicking the Browse button (located in the Export Destination box) and specifying a new location for the file data to be exported to. Note that exported data will be saved as *.txt files.
 b. Click on **Change Format** to assign attributes to be included in the export file name.
c. Click into a field box (under the Include column) to deselect an attribute.

![Image of Filename Format dialog box]

6c

6d

d. Click OK.

e. Back at the Batch Settings dialog box, click on the Email Notifications tab to specify desired email notification options. For more information on email settings, see your network administrator.

![Image of Batch Settings dialog box]

6e

6f

f. Click OK.

7. Verify that the plate adapter and the output stack of the Handler are empty.

8. Click Start Batch.
Note: Note that if the plate type does not match the plate block installed on the instrument, the Automation Controller will not start. You can assign plate types by selecting Tools > Options and selecting the desired plate format. The handler loads the plates and the instrument starts the run.

Note: To stop the run, click Stop Batch. You will see a warning message asking you to verify stopping the run.

9. Click on the Run Status tab to view the plate run status. Note that once a plate is being processed, it will not appear in the Processed Plates tab or be listed in the Queued Plates section of the Batch Status box. The plate information will be available under the Currently Running Plate section.
Note: For standard curve (AQ) and ddCt (RQ) plates, a view of the amplification and temperature plot will be available and can be selected by clicking on the radial button.

10. Click on **Processed Plates** to view information about the processed plates.
Appendix C

Flags and Filtering for Relative Quantitation Using Comparative C_T Plate Documents

Overview

In the SDS Software, you can automatically flag results data to meet specified criteria. Flags are assay specific and are user configured or automatically assigned.

- Automatically assigned flags are not user configurable. These flags are displayed in the Results table and the QC Summary tab.
- User configured flags are set/defined by the user. These flags are also displayed in the Results table and QC Summary tab.

For more information about flags and filters, see the SDS Online Help.

Using the Analysis Settings Dialog Box to Assign Flags

You assign flags when you configure the analysis settings for an individual plate document or study. When you open the Analysis Settings dialog box for your current plate document, a list of the flags applicable to that plate document appears in the Plate tab.

1. Click (or select Analysis > Analysis Settings) to open the Analysis Settings dialog box.

2. Select the Plate tab. A list of all applicable flags for the open plate document is displayed. Note that for RQ studies, flags associated with a study will appear in the Study tab.

For more information about assigning flags, see the SDS Online Help.

Notes

Relative Quantitation Using Comparative C_T Assay Getting Started Guide for the 7900HT Fast System
Plate Tab

The contents of the Plate tab are described below.

<table>
<thead>
<tr>
<th>No.</th>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Flag Condition and Omit Plates When...</td>
<td>Name of the flag setting.</td>
</tr>
<tr>
<td>2</td>
<td>Flag column</td>
<td>Indicates whether or not to flag a condition. If the checkbox is checked, the selected condition will be flagged.</td>
</tr>
<tr>
<td>3</td>
<td>Condition column</td>
<td>The Condition drop-down lists vary per flag. If conditions are not applicable to a flag, no drop-down list is available.</td>
</tr>
<tr>
<td>4</td>
<td>Flag Condition Value column</td>
<td>Allows you to enter a numeric range or threshold for a flag.</td>
</tr>
<tr>
<td>5</td>
<td>Omit column</td>
<td>Determines whether or not to omit a well if the flag condition is met. If the checkbox is checked, the well will be omitted if the condition is met.</td>
</tr>
</tbody>
</table>

Flag Icons

In the plate document, you can view flags in the SDS Software:

- Results Table
 View flags, filter the results based on flags, and sort the table by flags
- Well Grid
- QC Summary Tab
 The QC Summary tab provides an overview of the plate document’s quality, as shown below.

Flag Icons

The following flag icons are used in both the Results Table and QC view:

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Icon]</td>
<td>Passing well (no flags are assigned)</td>
</tr>
</tbody>
</table>

Notes
For More Information

For more information about flags, see *SDS Online Help.*

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>🟢</td>
<td>Flagged well</td>
</tr>
<tr>
<td>🔴</td>
<td>Well omitted by the algorithm</td>
</tr>
<tr>
<td>🗑</td>
<td>Manually omitted wells</td>
</tr>
</tbody>
</table>
References

Index

Numerics
3D bars 62
5'-nuclease assay 13

A
AmpErase UNG 14, 21, 24
amplification curve 56
amplification plots
types of amplification plots for RQ studies 60
appearance of graphs 41, 61, 62
Applied Biosystems
contacting vii
customer feedback on documentation vii
Information Development department vii
Technical Support vii
AQ plates
omitting samples from 44
assumptions for using this guide v
automatic baseline determination 56
automatic threshold determination 56
autoscaling options 41, 61, 62

B
background in amplification curve 56
bar width 62
baseline
adjusting 56
definition 3
examples 58
baseline, manually setting 56
bold text, when to use v

C
calibrator
definition 10
CAUTION, description vi
cDNA
generating 19
storing 19
See also reverse transcription
Chemistries 13
comparative method of calculation 5, 50
concentration of RNA 19
conventions
bold text v
for describing menu commands v
IMPORTANTS! v
in this guide v
italic text v
Notes v
user attention words v
Ct. See threshold cycle
curves
amplification 56
standard 3
customer feedback, on Applied Biosystems
documents vii

D
data
analyzing 40, 60
exporting 65
generating PCR data from AQ plates 38
importing 29
omitting from a plate 44
omitting from a study 65
Delta Rn vs. Cycle view 61
designing RQ experiments
determining reagent configuration 13
PCR method 12
primers and probes 16
selecting the chemistry 13
detector tasks, definition 28
deviation, standard 59
display options 41, 61, 62
documentation, related vi
documents
exporting 65
RQ Study 50
templates 29
dyes
FAM 16, 67
reporter 3
SYBR Green I 13, 15

E
endogenous controls
associating with detectors 28
for RQ plates 28
equipment 5
example RQ experiment
components 11
PCR master mix 25
PCR method 12
reverse transcription 20
RQ Plate document, example 34
RQ Study document, example 60
exponential phase of amplification curve 56
exporting data
RQ studies 65
exporting plate data 45, 46
F
FAM dye 16, 67
Fast system
thermal cycling conditions 35, 36
G
Gene Expression plots 62
graph settings 41, 61, 62
guidelines
preparing RNA 18
H
High Capacity cDNA Archive kit 19
I
importing plate setup information 29
Information Development department, contacting vii
italic text, when to use v
L
line width 41, 61, 62
linear phase of amplification curve 56
M
master mix, PCR 21
materials 5
menu commands, conventions for describing v
MSDSs, obtaining vii
multiplex PCR 12
N
normalized reporter 3
O
options, display 41, 61, 62
options, graph 41, 61, 62
outliers 44, 65
P
passive reference 3
PCR
end-point 3
master mix, preparing 21
multiplex 12
real-time 3
selecting a method 12
singleplex 12
phases of amplification curve 56
plateau phase of amplification curve 56
plot appearance 41, 61, 62
Primer Express Software 16
primers 16
probes 16
R
reagent configurations 14
real-time PCR assays 3
reference sample. See calibrator
reference, passive 3
relative quantification
comparative method of calculation 5
experiments. See also RQ experiments 4
real-time PCR 3
RQ plates 4
RQ studies 5
replicates 10
Report tab 47
reporter dye 3
Results tab 40
results, RQ Study analysis 60
reverse transcription
guidelines for preparing RNA 18
High Capacity cDNA Archive kit 19
thermal cycling parameters 19
Rn vs. Cycle view 61
Rn. See normalized reporter
RNA
guidelines for preparing 18
isolation 18
starting concentration 19
RQ experiments
 chemistries 13
 components 10
 probes and primers 16
 reagent configuration 13
 requirements 10
 workflow 4
RQ Main Study view 52
RQ plates
 adding to RQ studies 51
 analyzing 40
 definition 4
 reanalyzing data 44
 results 40
RQ Results panel 60
RQ Sample grid 60
RQ studies
 adding RQ plates 51
 Amplification Plots 60
 data types 65
 definition 5
 exporting data 65
 Gene Expression plots 62
 omitting samples from orientation 62
 reanalyzing data 64
 results 60
 RQ Study documents 50
RT-PCR
 one-step 14, 36
 two-step 14, 35
S
 safety vi
 settings, graph 41, 61, 62
 Setup tab 34
 singleplex PCR 12
 standard curves 3
 standard deviation, effect of threshold on 59
 standard vs. Fast plates 23
 study, RQ. See RQ studies
 SYBR Green I dye chemistry 13
T
 TaqMan Assays 16
 TaqMan Custom Gene Expression Assays 16
 TaqMan MGB probes 16
 TaqMan reagent chemistry 13
 TaqMan Universal PCR Master Mix vii
 TaqMan® Gene Expression Assays 16
 target
 associating with detectors 28
 definition 10
 tasks. See detector tasks
 Technical Support, contacting vii
 template documents 29
 text conventions v
 thermal cycling conditions
 default for PCR 35
 one-step RT-PCR 36
 specifying 38
 two-step RT-PCR 35
 thermal cycling parameters
 for plates added to a study 51, 70
 RT using High Capacity cDNA Archive kit 19
 threshold
 adjusting 56
 definition 3
 examples 59
 threshold cycle
 definition 3
 setting for AQ studies 55
 threshold, manual settings 56
 training, information on viii
U
 uracil-N-glycosylase 14
 user attention words, described v
W
 WARNING, description vi
 wells, replicate 10
 width, bars 62
 width, lines 41, 61, 62
 workflow, RQ experiment overview 4
X
 x-axis 41, 61, 62
Y
 y-axis 41, 61, 62
Index
Worldwide Sales and Support

Applied Biosystems vast distribution and service network, composed of highly trained support and applications personnel, reaches 150 countries on six continents. For sales office locations and technical support, please call our local office or refer to our Web site at www.appliedbiosystems.com.

Applera is committed to providing the world's leading technology and information for life scientists. Applera Corporation consists of the Applied Biosystems and Celera Genomics businesses.

Headquarters
850 Lincoln Centre Drive
Foster City, CA 94404 USA
Phone: +1 650.638.5800
Toll Free (In North America): +1 800.345.5224
Fax: +1 650.638.5884

11/2007